
REJ
EC

TE
D

Towards a web architecture structure based on intent
Matheus Marabesi

Abstract
Web applications, specifically javascript based on virtual
DOM, has growing on its adoption over time and developers
are choosing those libraries to use in new projects. Such
applications might also be complex based on the business
requirements. Folders and files play an important role in the
source code architecture. The lack of organization leads to
poor understanding of the software components and how
they connect with each other. Furthermore, this problem
can also affect experienced developers, as such, it might take
longer for code understanding and cost rising as it might
require more time to implement new features or fix bugs.
Thinking about this scenario, this paper proposes a web ar-
chitecture based on intent and communication focused on
a real web application. The goal of such structure is to pro-
vide developers with a guide, each software component has a
place on the architecture and improve communication across
developers. Furthermore, the architecture aims being agnos-
tic of any framework or library, thus providing a standard
across specific frameworks or libraries implementation.

CCSConcepts: •Computer systems organization→Em-
bedded systems; Redundancy; Robotics; • Networks →
Network reliability.

Keywords: web, architecture, intent, communication

ACM Reference Format:
Matheus Marabesi. 2023. Towards a web architecture structure
based on intent. In Proceedings of ACM Conference (Conference’17).
ACM,NewYork, NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 Introduction
Web javascript applications based on virtual DOM [4] are
used by developers every day. For each specific library or
framework, there are a set of guide lines for developers to
create a folder hierarchy as well as files. This approach is not
restricted for web applications only, for example, server side

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

applications have their structure, and it also applies based
on the framework used.
A server side application based on the framework Lar-

avel [13], will have a opinionated way to create folders and
naming files. Laravel uses the architectural pattern MVC
(Model-View-Controller [8]) and is not limited to it, it also
adds functionalities on top of it. For java, springboot [17]
follows the same principle, it has the guide lines in which
the developer follow to agree with the framework style. The
guide lines rules leads to coupling into the framework phi-
losophy, which in turn can lead to a harder approach for
software evolution. Presenting a MVC style, induces devel-
opers to use MVC across the application.

Architectural styles are used to avoid coupling in a given
framework style. For example, the clean architecture [12] is
used in server side applications to decouple the framework
style and focus on the application domain problem. The clean
architecture, is a architectural style developed with the view
being an implementation detail, therefore, its foundation is
not restricted to server side applications.

Thinking about this context, the rest of this paper discuss
the implementation of a architectural style focused on intent,
inspired by the clean architecture and for web applications.
The section 2 presents the topics on the clean architecutre,
the section 3 enumerates related work and concrete imple-
mentations of the clean architeture in web applcations, the
section 4 discuss the web architecture conception followed
by the section 5 that provides a concrete implementation
of the proposed architectural style, and finally the section 6
ends the paper eliciting future works.

2 Clean architecture
The clean architecture was presented by [12] as a combina-
tion of different architectural styles [11], named: Hexago-
nal Architecture [2], Onion Architecture [14], Data-Context-
Interaction [3] and Boundary-Control-Entity [7]. As men-
tioned by [11] each of those styles vay in some details, but
they have the same objective: separation of concerns.
The objective of having an architecture that is clean, is

to focus on the application business logic, instead of imple-
mentation details, as such, it makes the application testable
from the start, ease of maintanance and evolution in the long
term. The clean architecture divides the application in four
layers, named:

• Entities: those are objects that represents the business.
• Use cases: Those are objects where business rules hap-
pens
• Interface Adapters: Those are the bridge to access use
cases

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

REJ
EC

TE
D

Conference’17, July 2017, Washington, DC, USA Matheus Marabesi

Figure 1. Clean architecture diagram [11]

• Frameworks and adapters: Those are implementation
details, usually are external libraries

The conception of a clean architecture does not provide
a concrete implementation in any programming language.
It describes an architectural style, as such, [5] wrote his
implementation and interpretation of the architecture. Still,
it does not describe the details of implementing an user
facing application. The further it gets is to use the MVC. The
focus remains on the server side only.
This paper focus on the last layer described, the frame-

works and adapters, as this is the representation of a web
application. Complex Web applications require a modern
architectural style, for that, using MVC might not benefit for
long term and maintainability. Besides that, modern appli-
cations that use virtual DOM, brings thread offs that MVC
does not address. For example, global state management.

3 Related work
As the web application space have different frameworks and
libraries [6] [18] [15], the spread of different architectural
styles among them is common. This section attempts to list
projects that tried to follow the clean architecture in web
applications regardless of the library of choice.
[1] made a transformation to bring everything defined

in the clean architecture into the reacjs structure, it has an
opinionated structure in the application state management
and also assumes that the application will be used in the web
and also in the mobile.

Other architectural examples catalogued by [16], focuses
on a broader view of the overal components, and not just on
one face of the architecture, for instance, the presentation
layer. The layered architecture, named in his catalogue, has a
layer named Presentational Layer, in which has components,
still the way of how those components are structured are
not concerned.

4 Conception
The clean architecture applies some principles that focus
on the business rules, code maintainability and isolation of
responsabilities. As such, it had to take decisions to what to
take into account in the architecutre and what to leave for
another time. The web application is the item in which the
author names as a implementation detail, therefore, there is
no definiton in how to structure it.
Given this scenario, developers tried to fit this architec-

ture that is relavant for server side applications and fit into
the web application. Such translation from server to web
application does no take into account the specifities of web
applications.

In the previous section for example, the extra boiler plate
generated to follow the clean architecture in the web appli-
cation made the overal structure more complex, with more
folders and extra responsabilities. This section describes an
approach to architect a web application, focused on the intent
and communication.

The first step towards the definition to build a web applica-
tion architecture is to acknowledge that the web application
is different from server side applications, and it requires more
attention. There are concerns that only web applications deal
with, for example, the UI (user interface) and supporting dif-
ferent browser vendors. The architectural styles [12] and
[16] doesn’t focus on those aspects.

[12] treats the presentation aspect with three layers, View,
Controller and Modal. This simplistic approach lacks differ-
ent requirements that a complex application might require,
such as, third party libraries, data flow and business rule.
As such, this paper aims to propose an architecture that

deals with those aspects and provides an higher level of
organization. There are four pilars, in which this architecture
stands, name:

1. UI (user interface)
2. Third party
3. Data flow
4. Packages

Starting from the UI, this is the place to have visual com-
ponents. Visual components are, pure components without
complex logic. For example, a container component.
Third party is the place to wrapthrid party libraries that

the application depends on, usually the third party is a de-
pendency that is used across files and in different places.
Moment is an example of third party library that falls on this
category.
Data flow, is the place to have everything related to the

data that the UI depends on. As such, this is the place for
redux, mobx or any other library that handles data flow and
has data itself.

The gotcha for this structure lies in the gray area, between
components, and how they communicate. To address this

REJ
EC

TE
D

Towards a web architecture structure based on intent Conference’17, July 2017, Washington, DC, USA

Figure 2. Layers interaction in the web application architec-
ture.

issue I suggest to use a specific place, a specific folder, named
packages.
The packages folder, in general would have a strict busi-

ness rule, as such, it is the place to have, in this case, pure
source code, withour interation with external libraris or data
management.
There is a gray area, between components communica-

tion, as for each layer described in the architecture the inter
communication will be required for a live application.

The arrows points which layers starts the communication
and if the layers are connected as a two way flow or just one
direction.

The gray area comes between the UI and the Data flow, as
sometimes, the data flow will start from the user interface
and later on the server will reply and automatically update
the UI. For example, real time applications fall under the gray
area. A chat application might initiate the answer through
the UI, therefore, the server will automatically updates the
UI to reflect the new message that arrived. The following
is a folder description of organizing the folder structure
following the proposed architecture:

Finally the proposed architecture brings benefits for test-
ing purposes, as its structure forces the separation of con-
cerns and isolates third party, improving its maintainability.
Modern web applications also provide a documentation to
interact with the UI components, as such, the architecture
has a single place to keep its design system documetation.

Figure 3. Default structure given by CRA

5 Implementation
This section provides a concrete example of the architectural
style presented in the section 4. The project used is a gamified
tool that aims to improve unit test teaching [10] [9]. The tool
is built on top of web teachnologies, named: reactjs, redux,
jsx, tailwind and nodejs. Besides that the tool is meant to
run on a web browser.
Due the lack of adoption of a single architectural style,

the tool started with the basic structure provided by the
reactjs library, there is no consensus on the structure in the
reactjs community, therefore, the skeleton provided by the
tool CRA1 is taken as a standard, Figure 3 depicts this default
structure.
Threfore as the application became complex due the fea-

ture it required, a structured approach was needed to keep
and evolve the application, as such, the implementation used
was the structure discussed in the section 4.

6 Future work
This paper presented aweb application architecture aimed on
intent and communication, taking into consideration what
the clean architecture and others architectural style lacks
into details and definition for web applications, as well as
existing broader architectural styles. This paper also dis-
cussed the different web application frameworks, and for
each there is a architecture already in place, but none of
them are unified.

This paper proposes an architectural style across libraries
and frameworks. Improving the maintainability and provid-
ing an intent for developers to build on top. It is an attempt
to close the gap between different libraries and frameworks
focused on intent and communication. As web applications
are becoming complex, it requires attention from developers
to architect a long live solution through an architectural
style.
Further research is required to evaluated the benefits or

down sides of the proposed architecture. The focus is to eval-
uate if it brings any benefits in real world projects regardless
of the frmework used or library.

1https://create-react-app.dev

REJ
EC

TE
D

Conference’17, July 2017, Washington, DC, USA Matheus Marabesi

References
[1] Rogério Brito. 2009. The algorithms bundle. https://github.com/falsy/

react-with-clean-architecture.
[2] Alistair Cockburn. 2007. Hexagonal architecture. https://alistair.

cockburn.us/hexagonal-architecture
[3] James O Coplien and Gertrud Bjørnvig. 2011. Lean architecture: for

agile software development. John Wiley & Sons.
[4] Marianne Grov. 2015. Building User Interfaces Using Virtual DOM.

Master’s thesis.
[5] Tom Hombergs. 2019. Get Your Hands Dirty on Clean Architecture: A

hands-on guide to creating clean web applications with code examples
in Java. Packt Publishing Ltd.

[6] Facebook Inc. 2021. React - A JavaScript library for building user
interfaces. https://reactjs.org.

[7] Ivar Jacobson. 1992. Object-Oriented Software Engineering: A Use Case
Driven Approach. Addison-Wesley.

[8] Glenn E Krasner, Stephen T Pope, et al. 1988. A description of the
model-view-controller user interface paradigm in the smalltalk-80
system. Journal of object oriented programming 1, 3 (1988), 26–49.

[9] M. Marabesi and I. Frango Silveira. 2020. EVALUATIONOF TESTABLE,
A GAMIFIED TOOL TO IMPROVE UNIT TEST TEACHING. In
INTED2020 Proceedings (Valencia, Spain) (14th International Technol-
ogy, Education and Development Conference). IATED, 330–338. https:

//doi.org/10.21125/inted.2020.0150
[10] Matheus Marabesi and Ismar Frango Silveira. 2019. Towards a gam-

ified tool to improve unit test teaching. In 2019 XIV Latin American
Conference on Learning Technologies (LACLO). IEEE, 12–19.

[11] Robert C Martin. 2012. The Clean Architecture. https://blog.cleancoder.
com/uncle-bob/2012/08/13/the-clean-architecture.html.

[12] Robert C Martin. 2018. Clean architecture: a craftsman’s guide to
software structure and design. Prentice Hall, Boston, MA. https:
//cds.cern.ch/record/2288410

[13] Taylor Otwell. 2021. Installation. https://laravel.com/docs/8.x.
[14] Jeffrey Palermo. 2008. The Onion Architecture : part 1. https:

//jeffreypalermo.com/2008/07/the-onion-architecture-part-1.
[15] Super powered by Google. 2021. The modern web developer’s platform.

https://angular.io.
[16] Mark Richards. 2015. Software Architecture Patterns - Un-

derstanding Common Architecture Patterns and When to Use
Them. https://www.oreilly.com/library/view/software-architecture-
patterns/9781491971437.

[17] Inc. or its affiliates VMware. 2021. Spring Boot. https://spring.io/
projects/spring-boot.

[18] Evan You. 2021. The Progressive - JavaScript Framework. https://vuejs.
org.

https://github.com/falsy/react-with-clean-architecture
https://github.com/falsy/react-with-clean-architecture
https://alistair.cockburn.us/hexagonal-architecture
https://alistair.cockburn.us/hexagonal-architecture
https://reactjs.org
https://doi.org/10.21125/inted.2020.0150
https://doi.org/10.21125/inted.2020.0150
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://cds.cern.ch/record/2288410
https://cds.cern.ch/record/2288410
https://laravel.com/docs/8.x
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1
https://angular.io
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://vuejs.org
https://vuejs.org

	Abstract
	1 Introduction
	2 Clean architecture
	3 Related work
	4 Conception
	5 Implementation
	6 Future work
	References

